
A Complete Algorithm for Optimization Modulo Nonlinear Real Arithmetic

Fuqi Jia1, 3, Yuhang Dong2, 3, Rui Han1, 3, Pei Huang4, Minghao Liu5, Feifei Ma2, 3 *, Jian Zhang1, 3 *

1SKLCS and Key Laboratory of System Software, ISCAS, Beijing, China
2Laboratory of Parallel Software and Computational Science, ISCAS, Beijing, China

3University of Chinese Academy of Sciences, Beijing, China
4 Stanford University, Stanford, USA
5 University of Oxford, Oxford, UK

{jiafq, maff, zj}@ios.ac.cn

Abstract

Optimization Modulo Nonlinear Real Arithmetic, abbrevi-
ated as OMT(NRA), generally focuses on optimizing a given
objective subject to quantifier-free Boolean combinations of
primitive constraints, including Boolean variables, polyno-
mial equations, and inequalities. It is widely applicable in
areas like program verification, analysis, planning, and so
on. The existing solver, OptiMathSAT, officially supporting
OMT(NRA), employs an incomplete algorithm. We present
a sound and complete algorithm, Optimization Cylindrical
Algebraic Covering (OCAC), integrated within the Conflict-
Driven Clause Learning (CDCL) framework, specifically tai-
lored for OMT(NRA) problems. We establish the correctness
and termination of CDCL(OCAC) and explore alternative ap-
proaches using cylindrical algebraic decomposition (CAD)
and first-order formulations. Our work includes the develop-
ment of the first complete OMT solver for NRA, demonstrat-
ing significant performance improvements. In benchmarks
generated from SMT-LIB instances, our algorithm finds the
optimum value in about 150% more instances compared to
the current leading solver, OptiMathSAT.

Supplementary — https://github.com/fuqi-jia/AAAI25

Introduction
Satisfiability Modulo Theories (SMT) (Kroening and Strich-
man 2016; Barrett et al. 2021) is a problem of checking the
satisfiability of a first-order logic formula under specific the-
ories (Barrett, Dill, and Levitt 1998; Dutertre and de Moura
2006; Jovanovic and de Moura 2012; Liang et al. 2016; Jia
et al. 2023b; Zhang, Li, and Cai 2024). Many real-world
problems involve not only determining satisfiability but also
optimizing a given objective function. It leads to the emer-
gence of more challenging and practical problems named
Optimization Modulo Theories (OMT) (Nieuwenhuis and
Oliveras 2006; Ma, Yan, and Zhang 2012; Bjørner, Phan,
and Fleckenstein 2015; Sebastiani and Trentin 2020). An
OMT formula generally combines constraints from a par-
ticular theory with an objective function for optimization.
The development of OMT solvers spans a variety of theo-
ries, such as linear real / integer arithmetic (Sebastiani and

*Corresponding authors.
Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Tomasi 2012; Bjørner, Phan, and Fleckenstein 2015; Sebas-
tiani and Trentin 2015; He et al. 2024), bit vectors (Nadel
and Ryvchin 2016; Trentin and Sebastiani 2021), and float-
ing point arithmetic (Trentin and Sebastiani 2019). It has nu-
merous applications such as program verification (Liu et al.
2017; Karpenkov 2017; Ratschan 2017), system safety anal-
ysis (Bertolissi, dos Santos, and Ranise 2018; Paoletti et al.
2019; Wang et al. 2021; Erata et al. 2023), software analy-
sis and testing (Zhang 2000; Zhang, Ma, and Zhang 2012;
Zhang et al. 2014; Henry et al. 2014; Karpenkov, Fried-
berger, and Beyer 2016; Jiang et al. 2017; Yao et al. 2021),
planning (Roselli, Bengtsson, and Åkesson 2018; Yan et al.
2019; Leofante et al. 2019; Marchetto et al. 2021; Jin et al.
2021; Leofante 2023) and machine learning (Teso, Sebas-
tiani, and Passerini 2017; Sivaraman et al. 2020; Huang et al.
2022, 2024). This paper focuses on OMT(NRA) problems.

OMT(NRA) has not been thoroughly investigated. The
only solver officially supporting OMT(NRA) is OptiMath-
SAT (Bigarella et al. 2021), which can handle challenging
instances. However, it uses an incomplete algorithm. The al-
gorithm is based on incremental linearization (Cimatti et al.
2018) to calculate an approximate optimum within the lin-
ear real arithmetic theory. Subsequently, it refines the objec-
tive by performing multiple iterations of SMT solving with
boundary constraints to pinpoint the optimum. The limita-
tion is that it can only partially handle optimums that are
irrational numbers, infinitely close to a given value (c ± ϵ
as ϵ −→ 0) or infinitely large or small (±∞). In practice, it
cannot solve the first case and only partly handles the others.

Example 1. Consider an OMT(NRA) formula,

minx+ y, s.t. x2 + y2 = 1,

the objective x+ y has a minimum value of −
√
2.

For the simple OMT instance as in Example 1, OptiMath-
SAT (Bigarella et al. 2021) and Z3 1 (Li et al. 2014; Bjørner,
Phan, and Fleckenstein 2015) cannot find the optimum in 2
hours. Each solution provided by the SMT solver incremen-
tally approximates the final result of −

√
2. Due to the den-

sity of rational numbers, the solver is persistently close to

1Z3 does not officially support OMT(NRA) formulas (some re-
lated issues: issue 2247, issue 4872, issue 5264, issue 5339), but
sometimes can give correct answers.

The Thirty-Ninth AAAI Conference on Artificial Intelligence (AAAI-25)

11255



the value but cannot precisely achieve the optimum. Similar
situations arise when the solution is infinitely close to a num-
ber (c± ϵ, ϵ −→ 0) or is infinitely large or small (±∞). Since
these are not specific numbers, no model can accurately rep-
resent these cases. The solver can only approximate values
within each iteration.

A recent work, General Optimization Modulo Theories
(GOMT) (Tsiskaridze, Barrett, and Tinelli 2024), presents a
generalization of the OMT problem and introduces a theory-
agnostic calculus that unifies single- and multi-objective op-
timization within a single framework. An OMT(NRA) or
NRA optimization solver can be a subroutine of the general
GOMT calculus.

This paper proposes a sound and complete algorithm,
CDCL(OCAC), for OMT(NRA). It integrates the Conflict-
Driven Clause Learning (CDCL) framework (Ganzinger
et al. 2004; Kroening and Strichman 2016; Barrett et al.
2021) and the Optimization Cylindrical Algebraic Covering
(OCAC) algorithm we proposed. The CDCL(T) framework
systematically explores all paths in the search tree. Mean-
while, the OCAC algorithm focuses on finding the optimum
within a specific path.

OCAC first converts the objective term into a variable.
Then it uses the projection operator to obtain the projected
polynomial set, which defines the boundary of satisfiable re-
gions. It can represent the optimum through a real root de-
rived from the polynomial set. Furthermore, an open bound-
ary signifies that the optimum is infinitely close to a certain
number (c±ϵ, ϵ −→ 0) or infinitely small or large (±∞). The
characteristics of projection operators ensure the correctness
of our algorithm and guarantee the termination.

We also investigate several variants of the algorithms.
Cylindrical Algebraic Decomposition (CAD) (Collins 1975;
Arnon, Collins, and McCallum 1984) is an algorithm that
decomposes space into sign-invariant regions. It can be
adapted for optimization (Nan et al. 2017; Wolfram 2024).
We introduce a first-order formulation for the OMT(NRA)
problem. These variants, along with OptiMathSAT (Bi-
garella et al. 2021), serve as baselines for comparison with
CDCL(OCAC), enabling a comprehensive evaluation.

We summarize our contributions as follows:
• Development of the first complete OMT solver for NRA:

We present OCAC and CDCL(OCAC), sound and com-
plete algorithms for solving OMT(NRA) formulas, along
with proofs of correctness and termination.

• Investigation of Variants: We explore two additional
solving algorithm variants, using CAD and a first-order
formulation approach.

• Evaluation: We integrated this algorithm into CVC5
(Barbosa et al. 2022) and conducted empirical eval-
uations demonstrating that our algorithm successfully
solved numerous instances beyond the capability of the
leading OMT solver, OptiMathSAT.

Preliminary
In this section, we describe the OMT(NRA) formulation
and the mathematical foundations of developing a complete
solving algorithm for SMT(NRA), i.e., cell and projection

operators. Following this, we briefly discuss the CAD and
CAC algorithms. Since maximization and minimization are
interconvertible, we focus solely on minimization in the sub-
sequent content. One can refer to (Kremer 2020) for a more
comprehensive set of definitions of CAD.

Nonlinear Real Arithmetic
The set of natural numbers, the set of rational numbers, and
the set of real numbers are denoted N, Q, and R, respec-
tively. The syntax of a general SMT formula over nonlinear
real arithmetic (NRA) is as follows:

p := x | c | p+ p | p · p (polynomial)
ϕ := b | p ≥ 0 | p = 0 | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ (formula)

In this context, x represents a variable for real numbers,
c denotes a constant, and b stands for a Boolean variable. A
polynomial atom can be expressed as p⊙0, where p is a poly-
nomial, and ⊙ belongs to the set {>,≥,=, <,≤}. Polyno-
mial atoms also function as Boolean variables. This notation
is derived from the aforementioned syntax. For example, the
expression p < 0 can be rewritten as ¬(p ≥ 0). ϕ is a general
SMT(NRA) formula. An NRA-interpretation I provides an
assignment to Boolean and real variables of ϕ. If ϕ is sat-
isfiable, then ϕI = ⊤. We divide it into two parts: IB and
IR, which means the interpretation of Boolean variables and
real variables. In the CDCL(T) framework (Ganzinger et al.
2004; Kroening and Strichman 2016; Barrett et al. 2021), a
branch is a sequence of decisions (assignments) and impli-
cations, where ψ = ϕIB represents the remaining formula
after partial assignment of Boolean variables. The formula
ψ is a conjunction of polynomial atoms. Then the branch ψ
is then extended by invoking the NRA-solver to handle the
interpretation of real variables IR. The set of polynomials
in formula ψ is denoted by P(ψ).

CAD Algorithm
The cell defines a sign-invariant region where the sign of
every polynomial in the set remains unchanged. The expres-
sion p(s) signifies the value obtained by substituting s into
the polynomial p. The sign function displays the sign of the
number derived from a polynomial with assignment s.

Definition 1 (Cell). Given a set of polynomials P =
{p1, · · · , pm} ⊆ Q[x1, · · · , xn] and s ∈ Rn, a cell C(P, s)
is a non-empty connected subset of Rn that is sign-invariant
for P and contains s. Specifically, for all i ∈ {1, · · · ,m},

∀s′ ∈ C(P, s), sign(pi(s)) = sign(pi(s
′)).

The projection operator can construct a polynomial set
that defines the boundary of the cell. The extension expres-
sion (s, si) = ((s1, · · · , si−1), si) = (s1, · · · , si−1, si) rep-
resents the extension of a sample point from Ri−1 to Ri.

We extend R to R, where R := R∪{∞}∪{ϵ} and ϵ −→ 0.
A strict partial order <R×R can be defined, with an obvious
interpretation. For example, −∞ is smaller than any other
number, and c − ϵ < c, ϵ −→ 0. For simplicity, we use < to
denote this relationship in the following context.

11256



(a) (b)

Figure 1: 1a and 1b are the exhibitive results of Example 2
and 3, respectively.

We define C(P, s)xi
as an interval {L,U} over xi, where

L,U ∈ R are the lower bound and the upper bound, i.e.,

∀r ∈ R.(L < r < U −→ s ∈ C(P, s)),

where s := (s1, · · · , si−1, r, si+1, · · · , sn), indicating that
si is replaced by r.

A CAD (Collins 1975; Arnon, Collins, and McCallum
1984) is a decomposition algorithm for a set of polyno-
mials in Rn, n ∈ N space resulting in a finite number of
cells. It encompasses two phases: projection and lift, exem-
plified in Example 2. It begins by reducing a polynomial set
P ⊆ Q[x1, · · · , xn] through projection operator, sequen-
tially eliminating variables xn, xn−1, · · · , x2 to yield sets
P (1), · · · , P (n−1), each with progressively fewer variables.
During the lift phase, the root isolation algorithm segments
R into cells using the roots of the univariate polynomial set
P (n−1). For instance, if there are k roots, CAD produces
2k + 1 samples for x1, chosen from the roots and the inter-
vening intervals. It plugs each sample for (x1, · · · , xi) into
the polynomial set P (n−i−1), transforming it into different
univariate polynomial sets. Then it isolates the roots and
constructs new samples for (x1, · · · , xi, xi+1). Repeated
n − 1 times, CAD yields sign-invariant cells marked by n-
dimensional sample points. The projection operator used in
CAD is defined as follows:.
Definition 2 (CAD Projection Operator). Given a set of
polynomials P = {p1, · · · , pm} ⊆ Q[x1, · · · , xi], the pro-
jection operator projdec is a function that maps P and xi
to a polynomial set P ′ ⊆ Q[x1, · · · , xi−1] such that for any
s ∈ Ri−1, there exists {s′1, · · · , s′l} ⊆ R such that

C(P ′, s)× R =
l⋃

j=1

C(P, (s, s′j)).

We define projidec(P ) as the i-th projection, that is,
projidec(P ) = P (n−i).
Example 2 (CAD). Consider the set of polynomials {x2 +
y2 − 1} from Example 1 and the variable order is x ≺ y.
CAD projects y first and results in a polynomial set {x2−1}.
The polynomial set has two roots by root isolation, that is,

x = −1 and x = 1. Then R will be divided into five seg-
ments: {x < −1, x = −1,−1 < x < 1, x = 1, x > 1}.
We sample {x = −2, x = −1, x = 0, x = 1, x = 2},
which results in five sets of polynomials by lift: {y2 + 3},
{y2}, {y2 − 1}, {y2}, and {y2 + 3}. Let us take the third
set of polynomials as an example, which has two roots, i.e.,
{−1, 1}. Then R will be divided into five segmentations:
{y < −1, y = −1,−1 < y < 1, y = 1, y > 1}. Sam-
ple points in the segmentations can represent sign-invariant
regions. As shown in Figure 1a, the red point (0, 0) can rep-
resent the sign-invariant region of {x2 + y2 − 1 < 0}.

CAC Algorithm
The Cylindrical Algebraic Covering Algorithm (Ábrahám
et al. 2021; Bär et al. 2023) is a variant of CAD, adjusted
to the context of SMT. This adaptation reduces the number
of projection polynomials needed within a specific projec-
tion. If CAC determines that xi+1 cannot be assigned due to
the union of unsatisfiable intervals encompassing R, it back-
tracks to the previous assignment of xi after only collecting
the conflicting polynomial set P . CAC generates unsatisfi-
able intervals for xi by analyzing P and resamples for xi.
This iteration continues until it ends with ⊤ or ⊥. The pro-
jection operator used in CAC is defined as follows:
Definition 3 (Covering Projection Operator (Bär et al.
2023)). Given m polynomial sets P 1, · · · , Pm, where each
P i ⊆ Q[x1, · · · , xn], i ∈ {1, · · · ,m}, a point s ∈ Rn−1, a
set of m real values S = {s′1, · · · , s′m} ⊆ R, and m cells
such that

{s} × R ⊆
m⋃
j=1

C(P j , (s, s′j)).

The covering projection operator projcov is a function that
maps P 1, · · · , Pm, s, S to a polynomial set P ′ such that

C(P ′, s)× R ⊆
m⋃
j=1

C(P j , (s, s′j)).

Example 3 (CAC). Consider a new polynomial atom from
Example 1: x2 + y2 < 1. Assume that CAC first assigns
x = 1, resulting in y2 < 0, equivalent to ⊥. Any value for
y will result in a conflict. Then CAC returns with the char-
acterizing polynomial set {x2 − 1} from {x2 + y2 − 1}.
CAC identifies an unsatisfiable region {−1, 1} × R due to
the same conflict reason as x = 1. Then excludes this inter-
val and then samples for x from R− {−1, 1}. Assume CAC
assigns x = 0, and then it will result in a polynomial set
{y2 < 1}. The unsatisfiable interval for y is (−∞,−1] and
[1,+∞). Figure 1b depicts the slashed parts as the elimi-
nated unsatisfiable regions. Sampling y = 0 will result in as-
signment (0, 0), which satisfies the set of polynomial atoms.

GOMT over Nonlinear Real Arithmetic
Definition 4 (GOMT problem (Tsiskaridze, Barrett, and
Tinelli 2024)). A General Optimization Modulo Theories
problem is a tuple GO := (t,≺, ϕ), where,

• t, a Σ-term of some sort σ, is an objective term to opti-
mize;

11257



• ≺ is a strict partial order definable in T , whose defining
formula has two free variables, each of sort σ, and

• ϕ is a Σ-formula.

Example 1 is a simple example of GO(x+y,<, x2+y2 =
1). For any GOMT problem GO and T -interpretations I and
I ′, we say that:
• I is GO-consistent if I |= ϕ;
• I GO-dominates I ′, denoted by I <GO I ′, if I and I ′

are GO-consistent and tI ≺ tI
′
;

• I is a GO-solution if I is GO-consistent and no T -
interpretation GO-dominates I.

The GOMT is a theory-agnostic problem. Users can de-
fine different kinds of strict partial order or use built-in ones.

Sometimes, finding the GO-solution will be a Zeno-style
infinite chain of increasingly better solutions (Tsiskaridze,
Barrett, and Tinelli 2024; Sebastiani and Tomasi 2012; Se-
bastiani and Trentin 2015). If we incrementally invoke an
SMT solver and prune the obtained objective value c via
t < c, there are two types of Zeno-style infinite chain:
• Infinitesimal case: The optimum is c + ϵ, where c is a

constant and ϵ is infinitesimal.
• Unbounded case: The optimum does not exist; in other

words, it is −∞.
In order to cover these two special cases, we define the

GOMT problem in NRA.
Definition 5 (GOMT over NRA). A GONRA is a tuple
GONRA := (t, < ϕ), where,
• t is the polynomial objective term to optimize;
• < is a strict partial order definable in NRA, whose for-

mula defines over R× R,
• ϕ is an SMT(NRA) formula.

Note that it may not have an exact interpretation I due to
infinitesimal and unbounded cases.

The Optimization Procedure
This section presents an overview of the optimization pro-
cedure and then describes the main algorithm, Optimization
Cylindrical Algebraic Covering (OCAC). We also show il-
lustrative cases that demonstrate the execution of the algo-
rithm, CDCL(OCAC).

Overview
This procedure relies on an extension of the CDCL(T)
framework. The CDCL(T) framework introduces a branch
ψ that is a conjunction of polynomial atoms. It serves as
input for OCAC. OCAC returns UNSAT or SAT with op-
timum and a cutting lemma. The cutting lemma prunes the
searched space for completeness. The algorithm transforms
the objective term into a variable xt. We can define the
OMT branch formula as ψ ∧ t = xt. Then OCAC estab-
lishes a variable order that grants priority to xt. Following
the CAC procedure, the values are assigned to the variables
in the predetermined order, leading to a full assignment or a
conflict. If OCAC achieves a full assignment, it constructs a
cell that encapsulates the corresponding point defined by the

Algorithm 1: OCAC
Input: ψ ∧ t = xt: The OMT branch formula, with n vari-
ables.
Output: g, v, l: A flag that ψ ∧ t = xt is satisfiable; The op-
timum value; The cutting lemma.

1: I := ∅, g := ⊥, v := None
2: while

⋃
I∈I I ̸= R do

3: st := Sample Objective Value(I)
4: (T,O) := Solve Internal(ψ ∧ t = xt ∧ xt = st)
5: if T = ⊤ then
6: g := ⊤, v := Analyze Cell(O)
7: O := O ∪ [st,+∞)
8: end if
9: I := I ∪ {O}

10: end while
11: return (g, v,Lemma(v))

full assignment. By analyzing the boundary of the cell, the
OCAC obtains a temporary optimum for xt in the branch.
If OCAC encounters a conflict, it resolves the conflict like
CAC, that is, finding and pruning a cover of samples within
the conflict. Each case narrows the unexplored space for xt.
Following several iterations of these processes, OCAC thor-
oughly investigates R, the domain of xt. Ultimately, OCAC
determines the optimum value of the branch or determines
that the branch is unsatisfiable. This process repeats until
the CDCL(T) framework exhausts all possible branches. Fi-
nally, the CDCL(T) framework outputs the optimum among
all satisfiable branches.

Optimization Cylindrical Algebraic Covering
OCAC Algorithm 1 iteratively samples the values for the
objective st and exhausts the search space for xt. It accepts
an OMT branch formula. Then, it samples values outside
the infeasible intervals for xt, focusing on an optimizing di-
rection. It prioritizes the smallest values, starting from the
leftmost unsearched interval (line 3). It solves the problem
ψ∧ t = xt ∧xt = st and returns a satisfiability flag T along
with a characterization interval O of xt (line 4). Upon find-
ing a full assignment (line 5), it identifies the optimum at
the left boundary of the characterization interval O (line 6).
The search space prunes the cell C(P (ψ), s)xt

and [st,+∞)
(line 7). After exhausting all search spaces for xt, OCAC
generates a cutting lemma l for CDCL(T) (line 11). For ex-
ample, if the optimum of the current branch is v = c, the
lemma will be xt < c. It forces the algorithm to find better
optimum values when processing other branches.

Solve Internal It checks the satisfiability of the formula
ψ(x) ∧ t(x) = xt ∧ xt = st by iteratively assigning val-
ues to the current variable until all variables are considered
(Kremer and Nalbach 2022). Then it constructs a character-
ization interval O for xt using projection operators and root
isolation algorithm. The intermediate solving process out-
lines the search space of xt in an OMT branch formula.

Analyze Cell It examines the characterization interval to
locate the optimum. This interval, I , is derived from a cell

11258



(a) (b)

Figure 2: 2a and 2b indicate the process of CDCL(OCAC)
with xt, y, x for Example 4 and Example 5, respectively. The
dark parts in the axis-xt are the pruned intervals via satisfia-
bility or unsatisfiability characterization intervals.

and can manifest itself as an open interval or a point interval.
The interval that includes st satisfies ψ ∧ t = xt ∧ xt = st,
which means that any value within I can lead to the full
assignment for the same reasons. The correctness is guaran-
teed by Theorem 2. OCAC can determine the optimum for
the current branch as stated in Corollary 1.

We can define a specific GOMT problem to formalize the
process and results of OCAC.
Definition 6 (GOMT in OCAC). A GOOCAC is a tuple
GOOCAC := (xt,≺Cell, ψ), where,

• xt, a variable with xt = t, is the objective variable where
t is the polynomial objective term to optimize;

• ≺Cell is a strict partial order definable in NRA, whose
formula defines over R× R, and xIt ≺Cell x

I
′

t is equiv-
alent to:

L(C(P(ψ), IR)xt
) < L(C(P(ψ), I

′

R)xt
),

• ψ is a conjunction of polynomial atoms.

Given an GOOCAC-solution I, we can determine the op-
timum vt, expressed as vt := L(C(P(ψ), IR)xt

). After the
CDCL(T) framework traverses all branches ψ of the SMT
formula ϕ, the minimum value of vt is identified as the opti-
mum of t in GO(t, <, ϕ).

Examples
This section concentrates on how CDCL(OCAC) executes
specific instances with variable order (xt, y, x). Note that the
order is projection variable order; for assigning, the order is
reversed, from xt to x. The instances are simple, with only
one branch, but can intuitively show the process.
Example 4. Continuing with Example 1, the algorithm finds
two full assignments and approaches the optimum on the
second attempt, as shown in Figure 2a. Initially, it first
samples xt 7→ 0 and finds a full assignment (x, y, xt) =

(−
√
2
2 ,

√
2
2 , 0) satisfying the constraints. Then it searches

for the satisfiable interval (cell) for xt 7→ 0. The values in
the satisfiable interval of xt can also be satisfiable for the
same reason as in xt 7→ 0, yielding (−1, 1). It also excludes
[0,+∞) because the minimum cannot be there, finally dis-
carding (−1,+∞). Next, it samples xt 7→ −2 and fails to

complete the assignment. Then, based on CAC, it identifies
(−∞,−

√
2) as the reason why xt cannot be extended to

a full assignment, leading to the pruning of (−∞,−
√
2).

The remaining interval potentially containing the optimum
is [−

√
2,−1]. The algorithm first samples the minimal, that

is, xt 7→ −
√
2, achieves a full assignment, and excludes

[−
√
2,+∞). Consequently, no further value can be as-

signed to xt, prompting a return to the outer CDCL frame-
work with the cutting lemma xt < −

√
2 ∧ ¬(x2 + y2 = 1).

The outer CDCL framework ends with an optimum of −
√
2.

Example 5. We slightly change the OMT formula in Ex-
ample 4 to GO(zx+y,≺Cell, x

2 + y2 ≥ 1). The algorithm
finds two full assignments and shows that the formula does
not have an optimum, that is, x + y 7→ −∞, as shown
in Figure 2b. Similarly to Example 4, it initially samples
xt 7→ 0 and prunes (−1,+∞). Then it samples xt 7→ −2
and obtains the full assignment. Upon analyzing the cell
C({x2+y2, x+y−xt}, (−2, 0,−2)), it finds x+y 7→ −∞.
The cutting lemma will be ⊥, which directly terminates the
outer CDCL framework with x+ y 7→ −∞.

The Termination and Correctness
We begin by introducing the correctness of the CAC algo-
rithm, as guaranteed by Theorem 1 (Ábrahám et al. 2021;
Bär et al. 2023).
Theorem 1. Let ψ be a conjunction of polynomial atoms
with x1, · · · , xn, S = {s′1, · · · , s′m} ⊆ R, P 1, · · · , Pm ⊆
Q[x1, · · · , xi] and s ∈ Ri−1 for 1 < i ≤ n. If {s} × R ⊆⋃m

j=1 C(P j , (s, s′j)) and for 1 ≤ j ≤ m, C(P j , (s, s′j)) is
unsatisfiable for ψ, then C(projcov(P 1, · · · , Pm, s, S), s) is
unsatisfiable for ψ.

In practice, CAC excludes cells that cannot extend to a
full assignment, guaranteeing finite-step termination by ei-
ther exhausting the entire space or finding a full assignment.
Theorem 2. Given an OMT branch formula ψ ∧ t = xt, P
denotes the set of polynomials in ψ ∧ t = xt. If ψ ∧ t =
xt is satisfiable, that is, there exists a complete assignment
s = (st, s1, · · · , sn) that satisfies ψ ∧ t = xt, then ∀γo ∈
C(projndec(P ), s)xt , ψ ∧ t = γo is satisfiable.

In the OCAC algorithm, once a full assignment is found,
a satisfiable interval for xt can be constructed based on The-
orem 2. Within this interval, every value leads to a full as-
signment, indicating that the optimum lies on the boundary.
Theorem 3 (Termination of OCAC). Given an OMT branch
formula ψ ∧ t = xt, OCAC terminates.
Proof sketch. For the case of xt, we can deduce the follow-
ing: If the current assignment is satisfiable, the correspond-
ing space can be pruned according to Theorem 2. On the
other hand, if it cannot extend to a full assignment, the space
can be eliminated according to the correctness of the cover-
ing projection operator. The process is finite, which ensures
that R is systematically excluded, leading to termination.
Theorem 4 (Correctness of OCAC). Given an OMT branch
formula ψ ∧ t = xt, if ψ ∧ t = xt is unsatisfiable, OCAC
returns UNSAT; otherwise, OCAC can find the optimum.

11259



Proof sketch. Since the unsatisfiable intervals of Theorem 1
and the satisfiable intervals of Theorem 2 are disjoint, the
optimum can be identified from the lower bound of the left-
most satisfiable interval.

Building on Theorem 2 and Theorem 4, we can formulate
a corollary to decide the optimum for xt.

Corollary 1. Given a conjunction of polynomial atoms ψ,
let Io of xt represent the leftmost satisfiable interval for min-
imization, which can be characterized by three cases:

• Io = (−∞, u) implies min(xt) = −∞;
• Io = (l, u) implies min(xt) = l + ϵ;
• Io = [l, l] implies min(xt) = l.

Theorem 5 (Termination and Correctness). For a given in-
stance GONRA(t, <, ϕ), the CDCL(OCAC) algorithm is
guaranteed to terminate and produce correct results.

Proving the theorem is a straightforward task. The outer
CDCL(T) framework systematically explores every branch
of ϕ, with OCAC terminated, and finds the optimum or
proves the unsatisfiability on each call. The cutting lemma
guarantees an improved optimum.

The complexity of CDCL(OCAC) stems from the need to
explore all branches along with the OCAC algorithm. In the
worst-case scenario, the OCAC may have to traverse all cells
to find the optimum within a single branch, resulting in dou-
bly exponential complexity relative to the number of vari-
ables (Collins 1975; Arnon, Collins, and McCallum 1984;
Jia et al. 2023a). However, in practice, the covering projec-
tion operator can more effectively eliminate larger unsatisfi-
able intervals for xt than the cell projection operator, helping
to identify cells that contain the optimum.

Baselines
This section explores several candidate baselines for solving
OMT(NRA) problems, featuring variants derived from CAD
and first-order formulation. We briefly review the techniques
used in OptiMathSAT. In addition, the reader can refer to
Chapter 7.6 of Kremer (2020), which details a variant devel-
oped from MCSAT (Jovanovic and de Moura 2012).

CAD-Based Variant
This variant employs the CAD algorithm for optimization
(Wolfram 2024). It constructs projndec(P(ψ)), where ψ de-
notes a branch of the SMT(NRA) formula. Using the root
isolation algorithm, the algorithm generates a list of candi-
date intervals for xt. The process starts by selecting a sample
point from the leftmost interval and lifting the partial assign-
ment until it reaches a satisfiable assignment. If it fails, the
process moves progressively toward the rightmost interval
of xt, continuing until a full assignment is achieved. If the
search exhausts without success, the branch is unsatisfiable.
The left boundary of the first interval where xt achieves a
full assignment is identified as the optimum. Although this
variant works with the CDCL(T) framework, it is resource-
intensive, particularly due to the demanding lift technique
(Strzebonski 2006; Iwane et al. 2013).

First-Order Formulation
A previous encoding of first-order logic (FOL) for OMT
problems can be found in (Kong, Solar-Lezama, and Gao
2018; Yao et al. 2021):

ψ(x) ∧ ∀y.(ψ(y) −→ t(x) ≤ t(y)).

Essentially, this formulation is appropriate when a model
exists. If Zeno-style infinite chain exists, the encoding will
report ⊥. For example, if t 7→ −∞, the algorithm can iden-
tify a valid model for any sufficiently large negative value
of t. Applying the constraint leads to an unsatisfiable result
which does not differentiate between these two cases and the
unsatisfiable OMT problem.

We can formulate these cases using the definitions. If the
optimum v is a constant, we have,

fixity −→ (ψ(x) ∧ t(x) = v ∧ ∀y.(ψ(y) −→ t(y) ≥ v)).

If it is infinitesimal case, i.e., v = c+ ϵ, ϵ −→ 0, we have,

infinitesimal −→ (∀y.(ψ(y) −→ t(y) > v)∧
∀ϵ.∃z(ϵ > 0 −→ ψ(z) ∧ t(z) < v + ϵ)).

If it is unbounded case, i.e., v −→ −∞, we have,

unboundedness −→ (∀M.∃y.(ψ(y) ∧ t(y) < M)).

An OMT(NRA) problem can be classified into one of
three categories, i.e.,

fixity ∨ infinitesimal ∨ unboundedness.

This encoding can also verify the results by integrating
the derived optimum into the first-order formulation.

OptiMathSAT
OptiMathSAT is the only solver that officially supports solv-
ing OMT(NRA) formulas (Sebastiani and Trentin 2020), but
it is not open source. OptiMathSAT (Bigarella et al. 2021),
based on MathSAT (Cimatti et al. 2013), employs incre-
mental linearization, converting nonlinear atoms into linear
atoms with uninterpreted functions and determining the op-
timum value. The value then serves as the lower bound of
the optimum for the OMT(NRA) formula. The algorithm re-
fines the optimum through multiple iterations of SMT solv-
ing. It can partially solve instances of the infinitesimal case
(c + ϵ, ϵ −→ 0), or the unbounded case (−∞), when the lin-
ear optimum coincides with or is very close to the nonlin-
ear optimum. It has different strategies to approach the opti-
mum: Bin (binary search) and Lin (linear search). The binary
search computes the pivot p = l+u

2 from the lower bound (l)
and the upper bound (u) and adds the constraint xt < p.
Linear search adds an incremental lemma xt < vo, to prune
the satisfiable assignment found vo to xt.

Empirical Evaluation
We implemented OCAC in CVC5 1.0.4, utilizing the Lazard
projection operator (Lazard 1994; Kremer and Brandt 2021)
provided by CoCoALib (Abbott and Bigatti 2010) and
LibPoly (Jovanovic and Dutertre 2017).

The experimental instances are generated from satisfiable
SMT(QF NRA) benchmarks. For variety, we consider five

11260



#(RAN) #(RAN +ϵ) #(Q) #(Q+ ϵ) #(∞) #SAT #UNSAT
CDCL(CAD) 246 551 802 2990 1129 5718 4568

FOL 304 610 1101 3545 1165 6725 4392
OptiMathSAT(Bin) 0 0 943 1870 353 3166 5040
OptiMathSAT(Lin) 0 0 928 1819 336 3083 5040

CDCL(OCAC) (Ours) 369 981 1084 4248 1250 7932 5019

Table 1: Performance on the number of solved instances, including 10000 satisfiable and 5532 unsatisfiable ones.

10 1 100 101 102 103

Time (s)

0

2000

4000

6000

8000

N
um

be
r o

f s
ol

ve
d 

in
st

an
ce

s

CDCL(CAD)
FOL
OptiMathSAT(Bin)
OptiMathSAT(Lin)
CDCL(OCAC)

Figure 3: Performance on satisfiable instances over time.

types of minimization objective functions: x, x+y, x2+y2,
xy, and xy+z, where x, y, and z are randomly selected from
the set of declared variables of the original SMT instances.
We randomly select 10000 instances. We also gather all un-
satisfiable instances by adding a random declared variable
as the objective, a total of 5532 instances.

All experiments are done with an Intel(R) Xeon(R) CPU
E5-2680 v4 @ 2.40GHz and 256G RAM within Ubuntu
20.04.6 LTS. The timeout for each solver that executes each
instance is 1200 seconds. We use Z3 4.13.0 (de Moura and
Bjørner 2008) for the first-order formulation and to verify
the optimum correctness with a timeout of 1200 s. We pro-
vide additional experiments and results in the supplemen-
tary material, including the situation of yicesQS (Bonacina,
Graham-Lengrand, and Vauthier 2023), CVC5 (Barbosa
et al. 2022), and dReal (Gao, Kong, and Clarke 2013).

Results
We aim to compare the performance of CDCL(OCAC) with
baseline methods. Table 1 displays the performance of dif-
ferent solvers in the number of solved instances. The nota-
tions #(RAN), #(RAN + ϵ), #(Q), #(Q+ ϵ), #(∞), represent
the number of solved instances by result type, with RAN
indicating a real algebraic number optimum, and the others
following similarly. #SAT and #UNSAT are total numbers
of solved instances. CDCL(OCAC) outperforms other meth-
ods in finding optimums in most categories of satisfiable in-
stances. It solves 150.5% and 157.3% more instances com-
pared to OptiMathSAT(Bin/Lin), respectively. CDCL(CAD)

and FOL perform well in satisfiable instances, with FOL ex-
celling particularly in #(Q) case. OptiMathSAT is the best
at solving unsatisfiable instances, while CDCL(OCAC) also
demonstrates competitive performance. OptiMathSAT can-
not solve any instances of #(RAN) or #(RAN + ϵ), but can
provide an approximate optimum within a specified toler-
ance for 42 instances categorized as #(Q) or #(Q + ϵ). Fig-
ure 3 displays the performance of different solvers over time.
Initially, FOL performs faster within approximately the first
0.2 seconds, but CDCL(OCAC) outperforms it afterwards.
Compared to other baseline solvers, CDCL(OCAC) consis-
tently shows higher efficiency throughout the entire dura-
tion. Overall, CDCL(OCAC) generally demonstrates better
solving ability and speed compared to other baselines.

Limitations
One challenge is the lack of standardized benchmarks for
OMT. Consequently, we depend on instances randomly gen-
erated from SMT(QF NRA) instances with a uniform dis-
tribution. We have successfully solved instances with up
to 29 variables, covering 92.01% of the original satisfiable
SMT(QF NRA) instances. and a more scalable algorithm is
required to solve larger instances.

Conclusion and Future Work
In this paper, we propose a sound and complete OMT(NRA)
algorithm. It is the first complete OMT solver for NRA. We
prove the correctness and termination of the algorithm and
investigate some variants of the OMT(NRA) algorithm, us-
ing CAD and first-order formulation. The empirical results
show that our algorithm can find all types of optimums.
OCAC complements incomplete algorithms in certain cases.
For future work, it is desirable to use and evaluate the solver
in more applications. In addition, we can improve the effi-
ciency by incorporating incomplete algorithms and expand
the versatility by integrating it into the GOMT framework.

Acknowledgments
This research has been supported by the National Nat-
ural Science Foundation of China (NSFC) under grants
No.62132020 and No.61972384. The authors thank Clark
Barrett and Nestan Tsiskaridze for introducing the concept
of Generalized Optimization Modulo Theories and address-
ing our questions about it. We also sincerely thank the
anonymous reviewers and editors for their valuable feedback
and suggestions.

11261



References
Abbott, J.; and Bigatti, A. M. 2010. CoCoALib: A C++ Li-
brary for Computations in Commutative Algebra... and Be-
yond. In ICMS, volume 6327 of LNCS, 73–76.
Ábrahám, E.; Davenport, J. H.; England, M.; and Kremer, G.
2021. Deciding the consistency of non-linear real arithmetic
constraints with a conflict driven search using cylindrical al-
gebraic coverings. JLAMP, 119: 100633.
Arnon, D. S.; Collins, G. E.; and McCallum, S. 1984. Cylin-
drical Algebraic Decomposition I: The Basic Algorithm.
SICOMP, 13(4): 865–877.
Bär, P.; Nalbach, J.; Ábrahám, E.; and Brown, C. W. 2023.
Exploiting Strict Constraints in the Cylindrical Algebraic
Covering. In SMT, volume 3429 of CEUR Workshop Pro-
ceedings, 33–45.
Barbosa, H.; Barrett, C.; Brain, M.; Kremer, G.; Lachnitt,
H.; Mann, M.; Mohamed, A.; Mohamed, M.; Niemetz, A.;
Nötzli, A.; et al. 2022. cvc5: A versatile and industrial-
strength SMT solver. In TACAS, 415–442.
Barrett, C. W.; Dill, D. L.; and Levitt, J. R. 1998. A Decision
Procedure for Bit-Vector Arithmetic. In DAC, 522–527.
Barrett, C. W.; Sebastiani, R.; Seshia, S. A.; and Tinelli, C.
2021. Satisfiability Modulo Theories. In Handbook of Sat-
isfiability - Second Edition, volume 336 of Frontiers in Arti-
ficial Intelligence and Applications, 1267–1329. IOS Press.
Bertolissi, C.; dos Santos, D. R.; and Ranise, S. 2018. Solv-
ing Multi-Objective Workflow Satisfiability Problems with
Optimization Modulo Theories Techniques. In SACMAT,
117–128.
Bigarella, F.; Cimatti, A.; Griggio, A.; Irfan, A.; Jonás, M.;
Roveri, M.; Sebastiani, R.; and Trentin, P. 2021. Optimiza-
tion Modulo Non-linear Arithmetic via Incremental Lin-
earization. In FroCoS, volume 12941 of LNCS, 213–231.
Bjørner, N. S.; Phan, A.; and Fleckenstein, L. 2015. νZ - An
Optimizing SMT Solver. In TACAS, volume 9035 of LNCS,
194–199.
Bonacina, M. P.; Graham-Lengrand, S.; and Vauthier, C.
2023. QSMA: A New Algorithm for Quantified Satisfia-
bility Modulo Theory and Assignment. In CADE, volume
14132 of LNCS, 78–95.
Cimatti, A.; Griggio, A.; Irfan, A.; Roveri, M.; and Sebas-
tiani, R. 2018. Incremental Linearization for Satisfiability
and Verification Modulo Nonlinear Arithmetic and Tran-
scendental Functions. TOCL, 19(3): 19:1–19:52.
Cimatti, A.; Griggio, A.; Schaafsma, B. J.; and Sebastiani,
R. 2013. The MathSAT5 SMT Solver. In TACAS, volume
7795 of LNCS, 93–107.
Collins, G. E. 1975. Quantifier elimination for real closed
fields by cylindrical algebraic decompostion. In Automata
theory and formal languages, 134–183. Springer.
de Moura, L. M.; and Bjørner, N. S. 2008. Z3: An Efficient
SMT Solver. In TACAS, volume 4963 of LNCS, 337–340.
Dutertre, B.; and de Moura, L. M. 2006. A Fast Linear-
Arithmetic Solver for DPLL(T). In CAV, volume 4144 of
LNCS, 81–94.

Erata, F.; Piskac, R.; Mateu, V.; and Szefer, J. 2023. To-
wards Automated Detection of Single-Trace Side-Channel
Vulnerabilities in Constant-Time Cryptographic Code. In
EuroS&P, 687–706.
Ganzinger, H.; Hagen, G.; Nieuwenhuis, R.; Oliveras, A.;
and Tinelli, C. 2004. DPLL( T): Fast Decision Procedures.
In CAV, volume 3114 of LNCS, 175–188.
Gao, S.; Kong, S.; and Clarke, E. M. 2013. dReal: An SMT
Solver for Nonlinear Theories over the Reals. In CADE,
volume 7898 of LNCS, 208–214.
He, X.; Li, B.; Zhao, M.; and Cai, S. 2024. A Local Search
Algorithm for MaxSMT(LIA). In FM, volume 14933 of
LNCS, 55–72.
Henry, J.; Asavoae, M.; Monniaux, D.; and Maiza, C. 2014.
How to compute worst-case execution time by optimization
modulo theory and a clever encoding of program semantics.
In LCTES, 43–52.
Huang, P.; Wu, H.; Yang, Y.; Daukantas, I.; Wu, M.; Zhang,
Y.; and Barrett, C. W. 2024. Towards Efficient Verification
of Quantized Neural Networks. In AAAI, 21152–21160.
Huang, P.; Yang, Y.; Liu, M.; Jia, F.; Ma, F.; and Zhang, J.
2022. ϵ-weakened robustness of deep neural networks. In
ISSTA, 126–138.
Iwane, H.; Yanami, H.; Anai, H.; and Yokoyama, K. 2013.
An effective implementation of symbolic-numeric cylin-
drical algebraic decomposition for quantifier elimination.
TOCS, 479: 43–69.
Jia, F.; Dong, Y.; Liu, M.; Huang, P.; Ma, F.; and Zhang, J.
2023a. Suggesting Variable Order for Cylindrical Algebraic
Decomposition via Reinforcement Learning. In NeurIPS.
Jia, F.; Han, R.; Huang, P.; Liu, M.; Ma, F.; and Zhang, J.
2023b. Improving Bit-Blasting for Nonlinear Integer Con-
straints. In ISSTA, 14–25.
Jiang, J.; Chen, L.; Wu, X.; and Wang, J. 2017. Block-
Wise Abstract Interpretation by Combining Abstract Do-
mains with SMT. In VMCAI, volume 10145 of LNCS, 310–
329.
Jin, X.; Xia, C.; Guan, N.; and Zeng, P. 2021. Joint Algo-
rithm of Message Fragmentation and No-Wait Scheduling
for Time-Sensitive Networks. IEEE CAA J. Autom. Sinica,
8(2): 478–490.
Jovanovic, D.; and de Moura, L. M. 2012. Solving Non-
linear Arithmetic. In IJCAR, volume 7364 of Lecture Notes
in Computer Science, 339–354.
Jovanovic, D.; and Dutertre, B. 2017. LibPoly: A Library
for Reasoning about Polynomials. In CAV, volume 1889 of
CEUR Workshop Proceedings, 28–39.
Karpenkov, E. G. 2017. Finding inductive invariants us-
ing satisfiability modulo theories and convex optimization.
Ph.D. thesis, Grenoble Alpes University, France.
Karpenkov, E. G.; Friedberger, K.; and Beyer, D. 2016.
JavaSMT: A Unified Interface for SMT Solvers in Java. In
VSTTE, volume 9971 of LNCS, 139–148.
Kong, S.; Solar-Lezama, A.; and Gao, S. 2018. Delta-
Decision Procedures for Exists-Forall Problems over the Re-
als. In CAV, volume 10982 of LNCS, 219–235.

11262



Kremer, G. 2020. Cylindrical algebraic decomposition for
nonlinear arithmetic problems. Ph.D. thesis, RWTH Aachen
University, Germany.
Kremer, G.; and Brandt, J. 2021. Implementing arith-
metic over algebraic numbers A tutorial for Lazard’s lifting
scheme in CAD. In SYNASC, 4–10.
Kremer, G.; and Nalbach, J. 2022. Cylindrical Algebraic
Coverings for Quantifiers (short paper). In IJCAR, volume
3458 of CEUR Workshop Proceedings, 1–9.
Kroening, D.; and Strichman, O. 2016. Decision Procedures
- An Algorithmic Point of View, Second Edition. Texts in
Theoretical Computer Science. An EATCS Series. Springer.
ISBN 978-3-662-50496-3.
Lazard, D. 1994. An improved projection for cylindrical
algebraic decomposition. In Algebraic geometry and its ap-
plications, 467–476.
Leofante, F. 2023. OMTPlan: A Tool for Optimal Planning
Modulo Theories. JSAT, 14(1): 17–23.
Leofante, F.; Ábrahám, E.; Niemueller, T.; Lakemeyer, G.;
and Tacchella, A. 2019. Integrated Synthesis and Execution
of Optimal Plans for Multi-Robot Systems in Logistics. Inf.
Syst. Frontiers, 21(1): 87–107.
Li, Y.; Albarghouthi, A.; Kincaid, Z.; Gurfinkel, A.; and
Chechik, M. 2014. Symbolic optimization with SMT
solvers. In POPL 2014, 607–618.
Liang, T.; Reynolds, A.; Tsiskaridze, N.; Tinelli, C.; Barrett,
C. W.; and Deters, M. 2016. An efficient SMT solver for
string constraints. Formal Methods Syst. Des., 48(3): 206–
234.
Liu, T.; Tyszberowicz, S. S.; Beckert, B.; and Taghdiri, M.
2017. Computing Exact Loop Bounds for Bounded Program
Verification. In SETTA, volume 10606 of LNCS, 147–163.
Ma, F.; Yan, J.; and Zhang, J. 2012. Solving Generalized Op-
timization Problems Subject to SMT Constraints. In FAW-
AAIM, volume 7285 of LNCS, 247–258.
Marchetto, G.; Sisto, R.; Valenza, F.; Yusupov, J.; and Ksen-
tini, A. 2021. A Formal Approach to Verify Connectivity
and Optimize VNF Placement in Industrial Networks. IEEE
Trans. Ind. Informatics, 17(2): 1515–1525.
Nadel, A.; and Ryvchin, V. 2016. Bit-Vector Optimization.
In TACAS, volume 9636 of LNCS, 851–867.
Nan, M. S.; Bogdan, C.; Grecea, D.; and Mamara, N. L.
2017. Exact global optimization. International Multidis-
ciplinary Scientific GeoConference: SGEM, 17: 303–309.
Nieuwenhuis, R.; and Oliveras, A. 2006. On SAT Modulo
Theories and Optimization Problems. In SAT, volume 4121
of LNCS, 156–169.
Paoletti, N.; Jiang, Z.; Islam, M. A.; Abbas, H.; Mangharam,
R.; Lin, S.; Gruber, Z.; and Smolka, S. A. 2019. Synthesiz-
ing stealthy reprogramming attacks on cardiac devices. In
ICCPS, 13–22.
Ratschan, S. 2017. Simulation Based Computation of Cer-
tificates for Safety of Dynamical Systems. In FORMATS,
volume 10419 of LNCS, 303–317.

Roselli, S. F.; Bengtsson, K.; and Åkesson, K. 2018. SMT
Solvers for Job-Shop Scheduling Problems: Models Com-
parison and Performance Evaluation. In CASE, 547–552.
Sebastiani, R.; and Tomasi, S. 2012. Optimization in SMT
with (Q) Cost Functions. In IJCAR, 484–498.
Sebastiani, R.; and Trentin, P. 2015. Pushing the Envelope of
Optimization Modulo Theories with Linear-Arithmetic Cost
Functions. In TACAS, volume 9035 of LNCS, 335–349.
Sebastiani, R.; and Trentin, P. 2020. OptiMathSAT: A Tool
for Optimization Modulo Theories. JAR, 64(3): 423–460.
Sivaraman, A.; Farnadi, G.; Millstein, T. D.; and den Broeck,
G. V. 2020. Counterexample-Guided Learning of Mono-
tonic Neural Networks. In NeurIPS.
Strzebonski, A. W. 2006. Cylindrical Algebraic Decompo-
sition using validated numerics. J. Symb. Comput., 41(9):
1021–1038.
Teso, S.; Sebastiani, R.; and Passerini, A. 2017. Structured
learning modulo theories. AIJ, 244: 166–187.
Trentin, P.; and Sebastiani, R. 2019. Optimization Modulo
the Theory of Floating-Point Numbers. In CADE, volume
11716 of LNCS, 550–567.
Trentin, P.; and Sebastiani, R. 2021. Optimization Modulo
the Theories of Signed Bit-Vectors and Floating-Point Num-
bers. JAR, 65(7): 1071–1096.
Tsiskaridze, N.; Barrett, C. W.; and Tinelli, C. 2024. Gen-
eralized Optimization Modulo Theories. In IJCAR, volume
14739 of LNCS, 458–479.
Wang, Q.; Chen, M.; Xue, B.; Zhan, N.; and Katoen, J. 2021.
Synthesizing Invariant Barrier Certificates via Difference-
of-Convex Programming. In CAV, volume 12759 of LNCS,
443–466.
Wolfram. 2024. Exact Global Optimization.
https://reference.wolfram.com/language/tutorial/
ConstrainedOptimizationExact.html.en. Section: Op-
timization by Cylindrical Algebraic Decomposition,
Accessed: August 15, 2024.
Yan, R.; Cai, A.; Gao, H.; Ma, F.; and Yan, J. 2019. SMT-
based Multi-objective Optimization for Scheduling of MP-
SoC Applications. In TASE, 160–167.
Yao, P.; Shi, Q.; Huang, H.; and Zhang, C. 2021. Pro-
gram analysis via efficient symbolic abstraction. PACMPL,
5(OOPSLA): 1–32.
Zhang, J. 2000. Specification Analysis and Test Data Gen-
eration by Solving Boolean Combinations of Numeric Con-
straints. In APAQS, 267–274.
Zhang, J.; Ma, F.; and Zhang, Z. 2012. Faulty Interaction
Identification via Constraint Solving and Optimization. In
SAT, volume 7317 of LNCS, 186–199.
Zhang, X.; Li, B.; and Cai, S. 2024. Deep Combination of
CDCL(T) and Local Search for Satisfiability Modulo Non-
Linear Integer Arithmetic Theory. In ICSE, 125:1–125:13.
Zhang, Z.; Yan, J.; Zhao, Y.; and Zhang, J. 2014. Generating
combinatorial test suite using combinatorial optimization. J.
Syst. Softw., 98: 191–207.

11263


